Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example
نویسندگان
چکیده
منابع مشابه
Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example
Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counterparts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to s...
متن کاملNonparametric Goodness-of-fit Test for Heteroscedastic Regression Models
For the heteroscedastic nonparametric regression model Yni = m(xni)+σ(xni)2ni, i = 1, ..., n, a novel method is proposed for testing that the regression function m is constant. The test statistic is motivated by recent developments in the asymptotic theory for analysis of variance when the number of factor levels is large. Its asymptotic normality is derived under the null hypothesis and suitab...
متن کاملModel diagnostics for smoothing spline ANOVA models
The author proposes some simple diagnostics for the assessment of the necessity of selected model terms in smoothing spline ANOVA models; the elimination of practically insignificant terms generally enhances the interpretability of the estimates, and sometimes may also have inferential implications. The diagnostics are derived from Kullback-Leibler geometry, and are illustrated in the settings ...
متن کاملSmoothing Spline Semi-parametric Nonlinear Regression Models
We consider the problem of modeling the mean function in regression. Often there is enough knowledge to model some components of the mean function parametrically. But for other vague and/or nuisance components, it is often desirable to leave them unspecified and to be modeled nonparametrically. In this article, we propose a general class of smoothing spline semi-parametric nonlinear regression ...
متن کاملA Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression
This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2018
ISSN: 0167-9473
DOI: 10.1016/j.csda.2018.01.004